

Hipolit's Biotech Breakdown: Introduction to Cellular Immunotherapy

Hipolit Cichocki 2022.04 Dragon Gate Investment Partners LLC

Disclaimer

This report is only for informational purposes and does not purport to make any forecasts or predictions and nothing in this report should be construed as doing so. It is merely intended to help investors better understand the company in a research report format.

Dragon Gate Investment Partners prepared the information in this report. Dragon Gate Investment Partners has no obligation to inform you when information in this report changes.

This report is for information purposes only. Under no circumstances is it to be used or considered as a solicitation to buy or sell any securities. While the information contained herein has been obtained from sources we believe to be reliable, Dragon Gate Investment Partners does not represent that it is accurate or complete, and accordingly, should not be relied upon as such. Risk factors and actual results may differ significantly from the information contained herein. This report or any portion hereof may not be reprinted, sold, or redistributed without the written consent of Dragon Gate Investment Partners.

This report is prepared for Institutional Consideration Only. Estimates of future performance are based on assumptions that may not be realized. Past performance is not necessarily a guide to future performance.

Copyright © Dragon Gate Investment Partners 2022

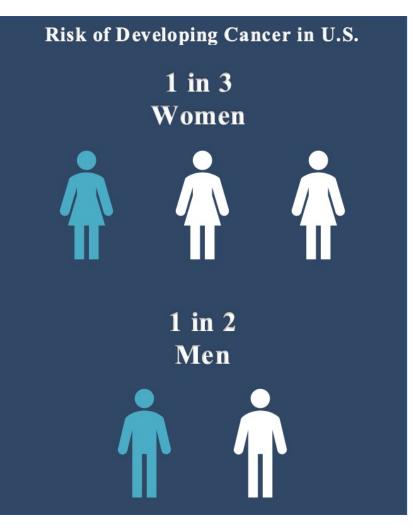
Table of Contents

The Cancer Problem	Slide 4
What is Cellular Immunotherapy?	Slide 7
Types of Cellular Immunotherapies	Slide 21
Interesting γδ T Research	Slide 30
Future of Cellular Immunotherapy	Slide 33
Notable Players in Cellular Immunotherapy	Slide 35

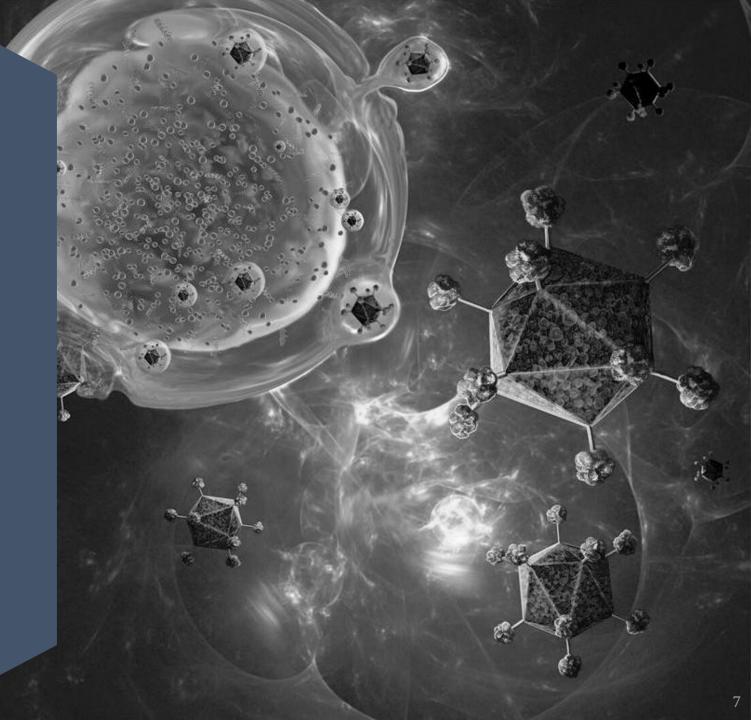
The Cancer Problem

Cancer is One of the Top Three Leading Causes of Death

Worldwide, the estimated new cancer cases and deaths in 2020 were 19.3 million and 10 million. In 2040, the burden is projected increase to 28.4 million cases.


Cause of Death in the U.S. 2019	Total number of deaths	Percentage of total deaths	Cause of Death in the U.S. 2020	Total number of deaths	Percentage of total deaths	Cause of Death in the U.S. 2021	Total number of deaths	Percentage of total deaths
Heart disease	659041	23.1%	Heart disease	696962	20.6%	Heart disease	689807	20.0%
Cancer	599601	21.0%	Cancer	602350	17.8%	Cancer	603150	17.5%
Accidents (unintentional	173040	6.1%	COVID-19	350831	10.5%	COVID-19	415517	12.0%
injuries) Chronic lower	156979	5.5%	Accidents (unintentional injuries)	200955	5.9%	Stroke (cerebrovascular diseases)	162140	4.7%
respiratory diseases Cerebrovascular diseases	150005	5.3%	Stroke (cerebrovascular diseases)	160234	4.7%	Accidents (unintentional injuries)	148914	4.3%
Alzheimer's disease Diabetes	121499 87647	4.3% 3.1%	Chronic lower respiratory diseases	152657	4.5%	Chronic lower respiratory diseases	141399	4.1%
-	51565	<u> </u>	Alzheimer's disease	134242	4.0%	Alzheimer's disease	118937	3.4%
Nephritis, nephrotic syndrome, and nephrosis	51505	1.870	Diabetes	102188	3.0%	Diabetes	102359	3.0%
(kidney disease)			Influenza and pneumonia	53544	1.6%	Drug Overdose	70895	2.1%
Influenza and pneumonia Intentional self-harm (suicide)	49783 47511	1.7% 1.7%	Nephritis, nephrotic syndrome, and nephrosis (kidney disease)	52547	1.6%	Nephritis, nephrotic syndrome, and nephrosis (kidney disease)	54013	1.6%

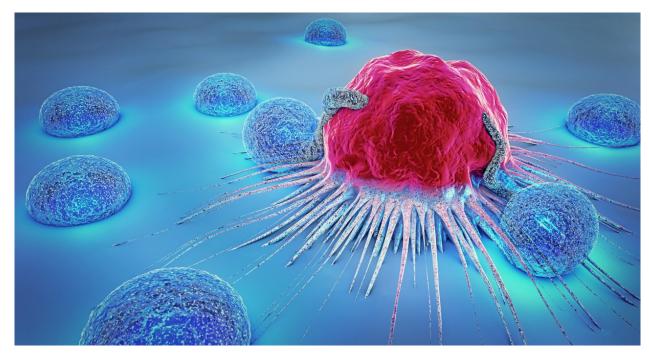
Source: "The biggest causes of death in 2020", https://www.medicalnewstoday.com/articles/death-statistics-by-cause-2020. Accessed Feb. 16.; "Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries", https://www.medicalnewstoday.com/articles/death-statistics-by-cause-2020. Accessed Feb. 16.; "Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries", https://www.medicalnewstoday.com/articles/death-statistics-by-cause-2020. Accessed Feb. 16.; "Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries", https://acsiournals.onlinelibrary.wiley.com/doi/full/10.3322/caac.21660. Accessed Feb. 8.; "Deaths Finanal Data for 2019", <a href="https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr



Probability of Developing Cancer

In the **United States**, the **risk of developing cancer** is **1 in 2** for **men** and **1 in 3** for **women**. The **probability** of **dying** from **cancer** was estimated to be **1 in 5**.

What is Cellular Immunotherapy?

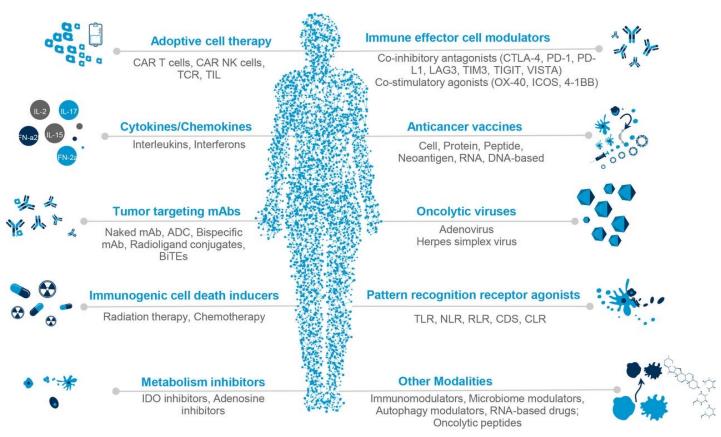


Immunotherapy

Immunotherapy, or **immuno-oncology** is a form of treatment that **uses the body's own immune system to prevent, control, and eliminate cancer**.

Immunotherapy can: educate the immune system to recognize and attack cancer cells, boost immune cells to help them eliminate cancer, and provide the body with additional components to enhance the immune response.

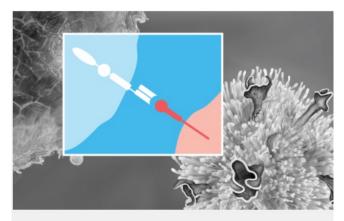
Source: Health insure savvy.



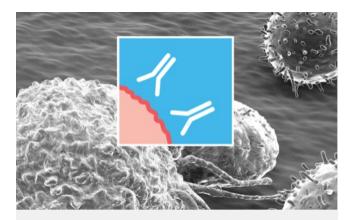
Immunotherapy Examples

Immunotherapy is a form of biotherapy or biological response therapy because it uses materials from living organisms to fight disease.

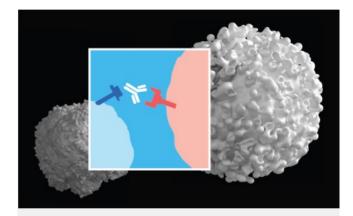
Some immunotherapies involve genetic engineering to enhance immune cells' cancer fighting abilities, also known as gene therapies.


Many immunotherapies can be used in combination with other treatments such as surgery, chemo, radiation, or targeted therapies. This improves effectiveness.

Source: Journal for ImmunoTherapy of Cancer.



Immunotherapy: A Few Promising Treatments


Adoptive Cell Therapy

Adoptive cell therapy reactivates, enhances, and expands naturally occurring, cancer-fighting immune cells before re-infusing them into patients.

Targeted Antibodies

Targeted antibodies can disrupt cancer cell activity and alert the immune system to attack.

Immunomodulators

Immunomodulators manipulate the "gas pedals" and "brakes" of the immune system to fight cancer.

Immunotherapy: A Few Promising Treatments Continued

Cancer Vaccines

Two cancer vaccines, as described by, Cancer Research Institute, are preventative which can protect against cancer development or therapeutic which can stimulate immune responses against tumors.

Oncolytic Virus Therapy

Oncolytic virus therapy uses modified viruses that can infect and destroy tumors

AlphaFold 2

AlphaFold is system created by DeepMind utilizing AI that confidently predicts accurate structures for most proteins and knows when it is wrong.

Adoptive Cell Therapy

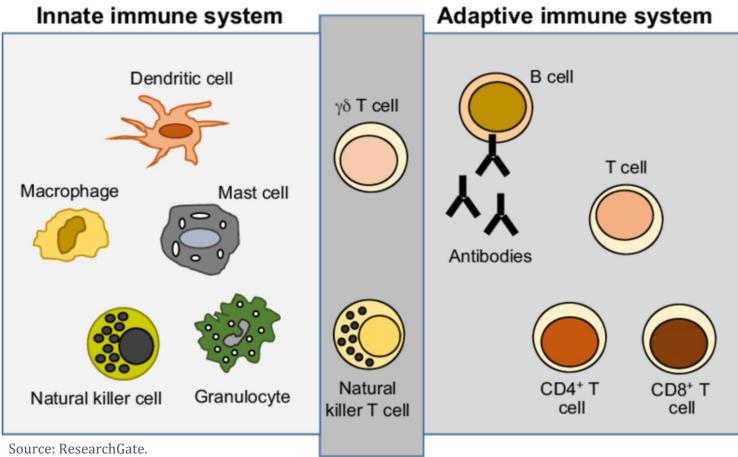
Cellular immunotherapy also known as adoptive cell therapy, **uses the body's own immune cells to fight cancer**. This can involve direct isolation or simple expansion of these cells.

Other methods genetically engineer the cells to enhance cancer fighting ability. The **Immune system possesses the capability to detect and eliminate infected, damaged, and cancerous cells**. Killer T cells and other immunotherapies bind to markers, also known as antigens, on the surface of cancer cells.

Treatment options are considered for both solo and combination treatment plans. Adoptive therapies are continually being improved and constantly evolve.

Side effects vary based on treatment, location, and type of cancer. Overreactive immune response can lead to excessive inflammation via cytokine storm. Neurotoxicity can occur from inflammation in brain. Side effects can be mild to moderate and can be potentially life- threatening. In most cases side effects can be safely managed when recognized and addressed early. Immunotherapies using T cells are becoming a huge trend in cancer treatment, especially CAR T.

Cancer Immunotherapy and Cell Therapy Market


Immunotherapy: The cancer immune therapy is projected to surpass \$310B by 2031. In 2021 the market was valued at \$119.4B

<u>**Cell Therapy:**</u> The cell therapy market was approximately \$7.75B and expected to grow at a CAGR of 25.6%, reaching approximately \$48.1B by 2027. This market includes therapies for malignancies, musculoskeletal disorders, autoimmune disorders, dermatology, and others.

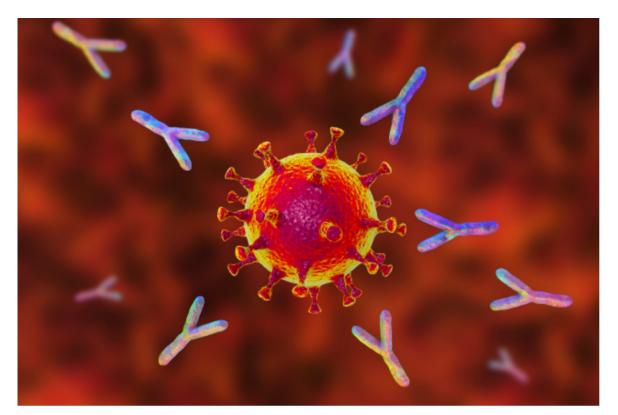
Immune System

• The Immune system comprised of two parts, innate and adaptive. Innate and adaptive immunity work closely together and take on different tasks.

Source: "The innate and adaptive immune systems", https://www.ncbi.nlm.nih.gov/books/NBK279396/. Accessed Feb. 16.

Innate Immunity

- Innate Immunity is the first line of defense against germs entering the body.
 - Innate immunity consists of skin, mucous membranes, immune cells, and proteins. When germs pass skin and mucous membranes, special immune cells and proteins activate.
- Innate immunity responds the same way to all germs and foreign substances, known as nonspecific. It only has limited power to stop germs from spreading.
- Examples of Activation
 - When skin infected, immune cells release substances to make blood vessels wider and more permeable leading to area around infection to be inflamed. Scavenger cells (phagocytes) can stop bacteria and viruses right away.
 - Several proteins (enzymes) activate like a chain reaction, allowing immune response to escalate quickly. Tasks include marking germs as targets for scavenger cells, attracting other immune cells from blood stream, destroy bacterial cell walls to kill them, and fight viruses by destroying viral envelope or cells that have been infected by virus.



Source: SkinKraft.

Adaptive Immunity

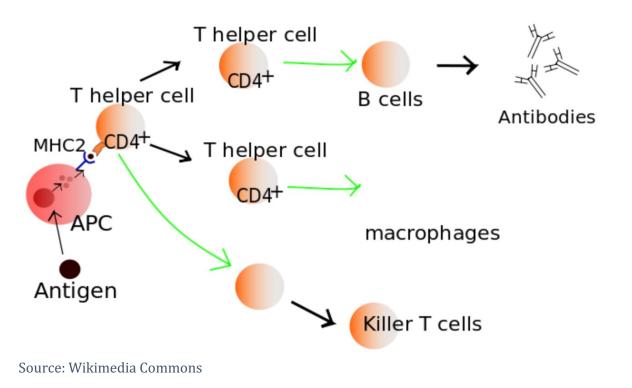
- Adaptive immunity takes over if innate cannot destroy the germs.
- It targets the germ causing infection by first identifying it. This makes adaptive response slower but more accurate than innate immune response. One advantage adaptive immunity is remembering germs, leading to quicker adaptive response if the known germ is encountered.
- It consists of T lymphocytes, B lymphocytes, and antibodies.

Source: CDC.

Introduction to T Cells & B Cells

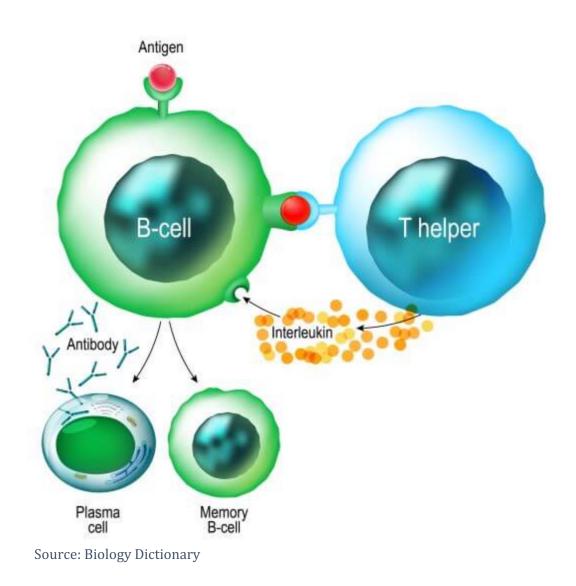
Lymphocytes can be further differentiated into B cells, T cells, and natural killer cells.

While natural killer cells recognize general signals of immune stress such as inflammation, B and T cells recognize foreign antigens specifically via hypervariable B cell and T cell receptors (BCRs and TCRs).

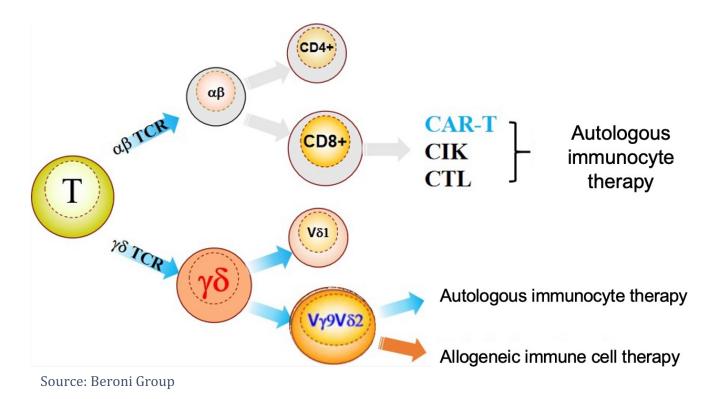

B cells recognize free, unprocessed antigens.

T cells recognize antigens within a complex of cell surface proteins called the major histocompatibility complex (**MHC**) on the surface of antigen-presenting cells (APCs).

T Cells: Three Main Jobs


- T Cells **use chemical messengers** to activate other immune system cells in order **to start the adaptive immune system** (T helper cells).
- T cells can **detect cells infected by viruses or tumorous cells and destroy them** (cytotoxic T cells).
- Some T helper cells become memory T cells after the infection has been defeated. They can
 "remember" which germs were defeated and are then ready to activate the adapted immune system quickly if there is another infection.

B Cells


- B cell activated through T cell dependent or T cell independent activation.
 - In dependent, they absorb antigen on surface using MHC.
 - Helper T can recognize antigens via MHC and activate B cells.
 - In independent B cell must encounter antigen and receive danger signal.
- Activated B cell can either become memory B or effector B.
 - Effector B cells, or plasma cells produce antibodies that tag or alarms to target invading agents for destruction by other immune agents such as macrophage.
 - Memory B help immune system to have a quicker response to same agent in the future.

γδ T Cells

- $\gamma\delta$ T cells account for 1-5% of overall T cell population and have been described as link between adaptive and innate.
 - These cells can undergo V-(D)-J segment rearrangement for adaptive, antigen specific response.
- **Direct activation possible** via recognition of pathogen associated or danger molecule patterns, particularly natural phospho-antigens
 - Via gamma delta TCR or non TCR proteins, acting independently or together to activate gamma delta t effector functions
- Like helper T, gamma delta T secrete particular effector cytokines in a subtype-and context-specific manner, however, unlike alpha beta T cells, most delta gamma T cells lack CD4 and CD8 and share several markers associated with NK cells or APC's such as Fc gamma RIII/CD16 and Toll-like receptors.

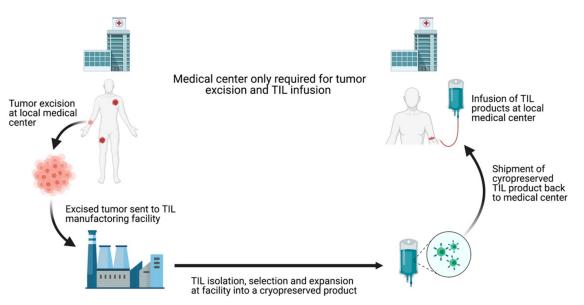
Types of Cellular Immunotherapies

Cellular Immunotherapies

Tumor-Infiltrating Lymphocyte (TIL) Therapy

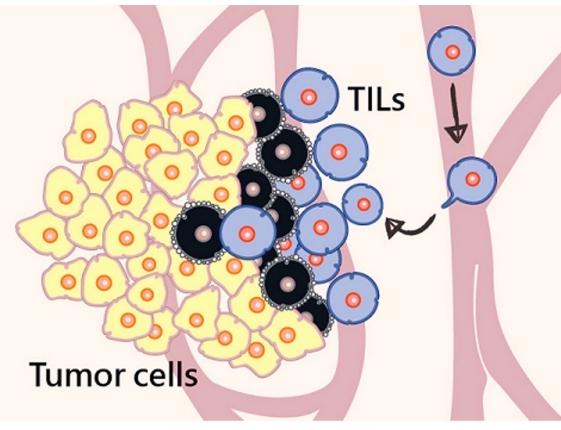
Engineered T Cell Receptor (TCR) Therapy

Chimeric Antigen Receptor (CAR) T Cell Therapy


Natural Killer (NK) Cell Therapy

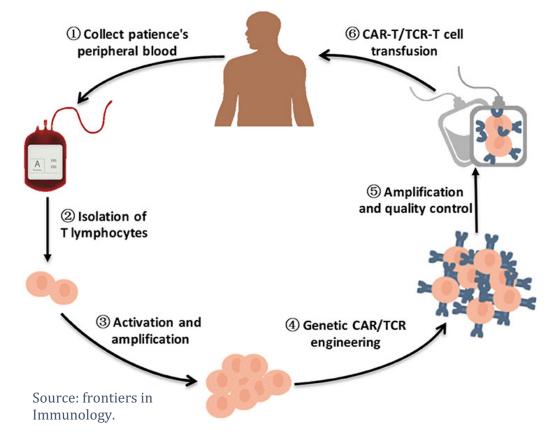
Gamma Delta T (γδ T) Cell Therapy

Tumor-Infiltrating Lymphocyte (TIL) Therapy


- The process to create tumor-infiltrating lymphocyte (TIL) therapy takes naturally occurring T cells that have infiltrated a patients' tumors and activates and expands them. A large dose of these activated T cells is infused into the patient where they seek and destroy tumors.
- Advantages include an additional line of treatment when other options are exhausted, in some cases TIL therapy may offer complete and lasting control of cancer, and it's a one-time therapy.
- **Disadvantages** include it is expensive, labor intensive to create, and may require long hospital stays (up to a few weeks). It is also challenging to receive with approval process and it's a last attempt at tumor control.

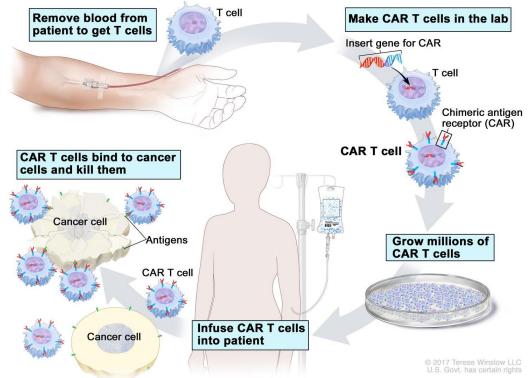
Source: MDPI.

Tumor-Infiltrating Lymphocyte (TIL) Therapy Continued


Source: Arigo Bi.

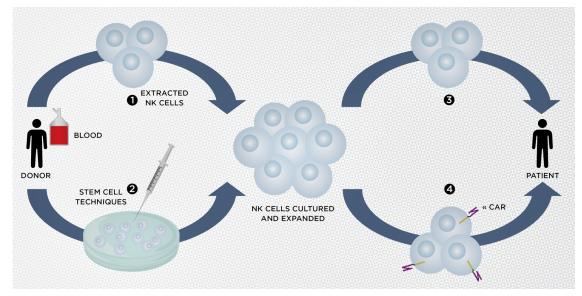
- **TIL therapy appears to have a good safety profile**. Often side effects emerge from the cotreatments such as chemo. High grade toxicity is very rare with treatment and difficult to tell apart from residual IL-2.
- The fastest **production time** is 22 days by Iovance, while others report 6-8 weeks minimum and significantly longer for tumor-specific or tumorneoantigen-specifics
- **Most common symptoms include** short term fever, chills, and shortness of breath. Later symptoms may include autoimmune conditions, but it is unknown if TIL therapy is related.

Engineered T Cell Receptor (TCR) Therapy


- Some patients don't have T cells that have recognized a tumor, while other patient T cells may not be able to be activated and expanded sufficiently to reject tumors.
- T cells are taken from patients and instead of activation and expansion, they're equipped with a T cell receptor that allows targeting of specific cancer antigens. This process allows for further personalization of treatment by allowing doctors to select target and type of T cell.
- One benefit is this therapy is more versatile and can treat more cancers when compared to CAR T. This treatment faces the same issues as CAR T in terms of difficulty and expenses of cell separation. CAR T is a form of TCR but the main difference is the programed receptors. TCR relies on MHC to mark cancer with recognizable antigens.

Chimeric Antigen Receptor (CAR) T Cell Therapy

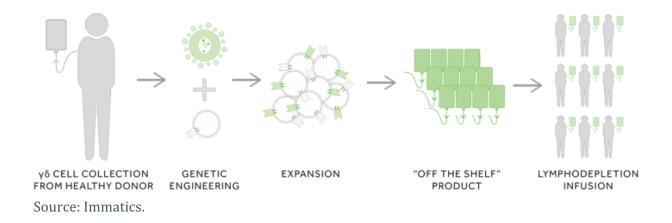
- CAR T cells are created by inserting synthetic receptor into T cells. This provides the advantage of binding to cancer even if antigens aren't present on the surface of tumor cells via MHC proteins (major histocompatibility complex). This advantage makes more cancer vulnerable to attack.
- CAR T can only recognize antigens naturally expressed on surface of cancer cells, so TCR therapy offers a larger range of potential antigen targets.
- CAR T is a form of TCR therapy, but CAR receptors target naturally occurring antigens. While CAR T treats fewer cancers but has the potential to help with many more variations. CAR T is costly and time consuming to produce.


CAR T-cell Therapy

Source: National Cancer Institute.

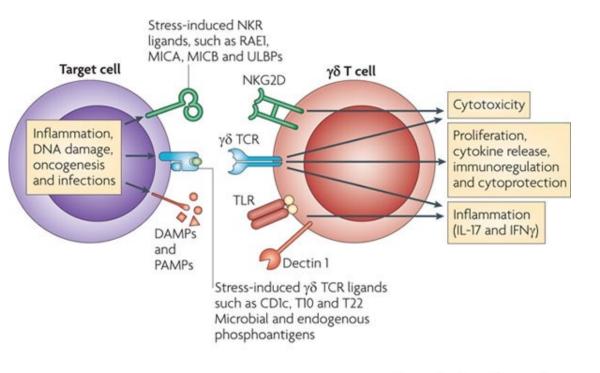
Natural Killer (NK) Cell Therapy

- Natural killer cell therapy uses **natural killer cells to combat cancer**. NK is part of immune system and attack germs and malignant cells.
- NK cell therapy is not tailored to specific antigen. NK cell therapy an destroy any abnormal cell but the cells are short lived.
- To increase efficacy cells are enhanced to improve stamina and longevity, along with some are enhanced with CARS.
- Advantages include no need to be genetically engineered to recognize cancer, faster to prepare, option for chemo resistant acute myeloid leukemia, limited side effects.



Source: The Scientist.

Gamma Delta T (γδ T) Cell Therapy

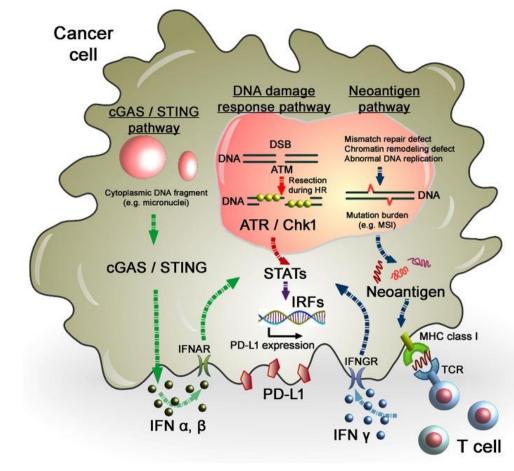

- Gamma Delta T is a new wave of immunotherapy that has the potential to treat cancer with stronger responses and fewer side effects. It is a rare type of T-cell that accounts for about 5% of T-cells in body. CAR T can come with strong and potentially deadly side effects and limited solid tumor targeting
- Gamma delta T is part of the innate immune response, essentially pre-programed to locate and destroy cells stressed by cancer associated transformation. Unmodified alpha beta T cells do not possess this capability. Gamma delta T cells offer a quick response in the body's immune system

Gamma Delta T Cell Therapy Continued

- Companies are researching ways to modify these gamma delta t cells in order to super charge the innate response.
- One benefit of this is that these only target cells that have undergone cancer transformation. This allows for large doses without the consequence of healthy cells being targeted.
- These cells **don't require donor compatibility to recognize the cancer antigen, which could lead to off the shelf treatment option**, potentially making this treatment faster to receive and more affordable.
- Gamma delta T cells can recognize antigens other than peptides, expanding the range of targets that can be used to kill a tumor.

Source: Nature Reviews Immunology.

Nature Reviews | Immunology

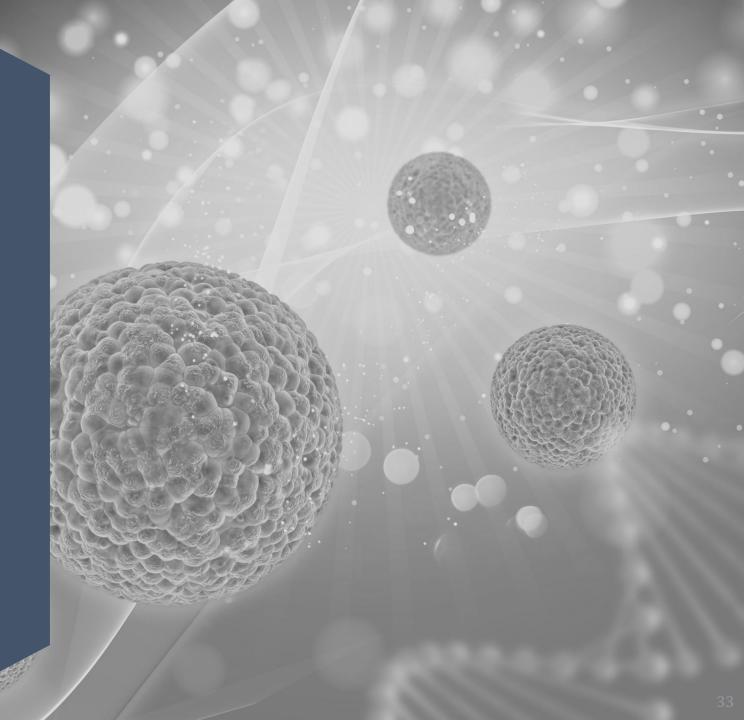

Interesting γδ T Research

STING and DMXAA

- STING is a pattern recognition receptor (PRR), which is expressed in a variety of endothelial, epithelial, and hematopoietic stem cells.
 - It is an interferon gene activator and is considered a linker molecule that plays an important role in antiviral immunity.
 - Studies have shown STING causes the release and production of cytokines that cause inflammation progression and tumor growth.
 - APCs phagocytose dead tumor cells, causing STINGdependent cytokines to be produced in phagocytes, facilitating cross presentation and anti-tumor CTL response.
 - Sting agonists have shown strong anti-tumor activity.
- In 2012, DMXAA (5,6-Dimethylxanthene-4-acetic acid) was first shown to be an agonist of the murine interferon gene-stimulating protein STING.
 - This activation of the STING pathway was shown to induce M2 macrophages to produce type I interferons, enhancing the antiviral effect at the level of innate immunity.

Source: Beroni Group

Gamma Delta T Anti Tumor Response Enhanced by STING


Background

- Pre-experiments found that STING activators could target $\gamma\delta$ T cells to enhance their anti-tumor ability, a process dependent on the upregulation of IFN- γ in $\gamma\delta$ T cells induced by STING activation, rather than the classical STING-IFN- α/β pathway.
- This study will confirm that STING activator can target and activate $\gamma\delta$ T cells to enhance tumor killing ability, and further clarify the downstream molecular mechanism and whether other new signaling pathways can be found.

Findings

- 1. The STING activator DMXAA enhances mRNA expression levels of interferon-gamma (IFN- γ) produced by $\gamma\delta$ T cells.
- 2. The STING activator DMXAA does not induce apoptosis within the effective time.
- 3. The STING activator DMXAA upregulates IFN- γ protein expression in $\gamma\delta$ T cells.
- 4. The STING activator DMXAA enhances $\gamma\delta$ T cellmediated tumor killing by upregulating IFN- γ .
- 5. DMXAA up-regulates the expression of IFN- γ in $\gamma\delta$ T cells by Eomes.

Future of Cellular Immunotherapy

Cellular Immunotherapy Future Outlook

Cancer immunotherapy has emerged as a promising therapeutic alternative, but cellular immunotherapy still faces many challenges.

Solid tumors create an immunosuppressive environment, and they have immune escape mechanisms increasing the difficulty of treatment.

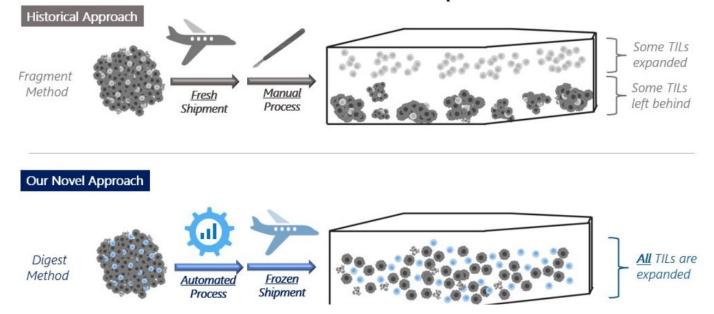
Further research, individualized approaches and strategies to combine treatments, will be needed to help response rates in the future.

T cell immunotherapy is a rapidly evolving area in cancer treatment. In the future T cell immunotherapy is expected to be further established as part of the standard therapy arsenal for solid cancer.


With AlphaFold 2 hailed for solving a 50-year-old protein folding problem, there is a treasure trove of data now waiting to be transformed into future advances.

Notable Players in Cellular Immunotherapy

Tumor Infiltrating Lymphocytes (TIL) Therapy

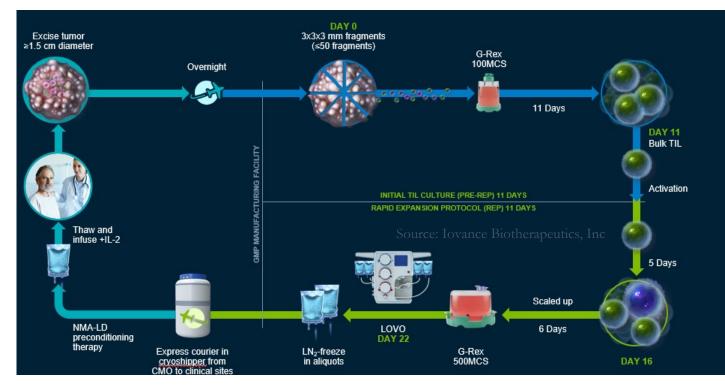

Instil Bio Inc (NasdaqGS: TIL)

Novel TIL manufacturing process

- **Three distinct stages: tumor processing-** includes tissue harvesting and cryopreservation, **TIL generation-** includes outgrowth and rapid expansion phases, **final product processing-** includes formulation and cryopreservation
- **Some potential advantages-** scheduling flexibility for physicians and patients, increased shelf life, more opportunities for optimization, enhanced cell viability and potency, more TILs from digested tumor tissue

• Company-operated in-house manufacturing facilities

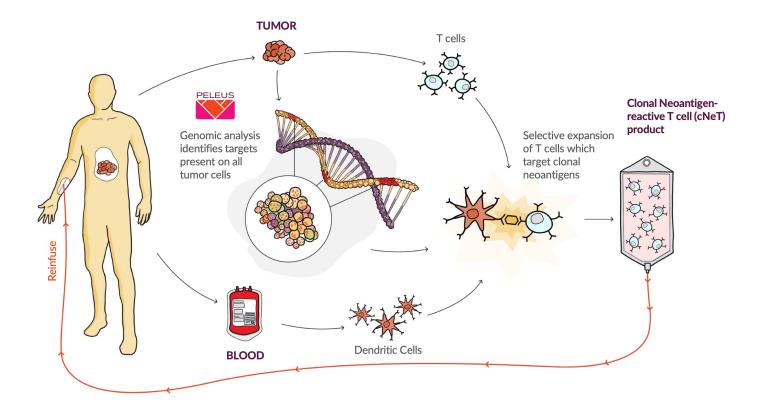
Robust clinical development experience with TILs


Instil Bio Inc (NasdaqGS: TIL) Pipeline

Iovance Biotherapeutics, Inc (NasdaqGM: IOVA)

- Iovance deploys **billions of personalized patient-specific polyclonal TIL cells** to recognize and target a multitude of nonoverlapping neoantigens in patients with solid tumors.
- **22-day proprietary manufacturing process**, manufacturing success rate of 90%+, 500+ patients treated with Iovance TIL

Iovance Biotherapeutics, Inc (NasdaqGM: IOVA) Clinical Pipeline


	Product Candidate	Indication(s)	IND-Enabling	Phase 1	Phase 2	Pivotal
	Lifileucel/LN-144	Melanoma (post-anti-PD-1)	C-144-01 Study, Cohorts 2 & 4			FDA RMAT designation
	Lifileucel	Cervical cancer (post-chemo; post-chemo & post-anti-PD-1)	C-145-04 Study, Cohort	C-145-04 Study, Cohorts 1 & 2		
TIL	LN-145	NSCLC (2L post-chemo & post-anti-PD-1)	IOV-LUN-202 Study, Co	ohorts 1 & 2		
	LN-145	NSCLC (2-4L incl. post-anti-PD-1)	IOV-COM-202 Study, C	ohort 3B		
	LN-145	HNSCC (post-anti-PD-1)	C-145-03 Study, Cohort 2			
	Lifileucel + pembro	Melanoma (anti-PD-1 naïve)	IOV-COM-202 Study, Co	ohort 1A		
	Lifileucel + pembro	Cervical cancer (1L, chemo & anti-PD-1 naïve)	C-145-04 Study, Cohort 3			
IL combinations	LN-145 + pembro	NSCLC (anti-PD-1 naïve)	IOV-COM-202 Study, Co	ohort 3A		
	LN-145 + ipi/nivo	NSCLC (post-anti-PD-1)	IOV-COM-202 Study, Co	ohort 3C		
	LN-145 + pembro	HNSCC (anti-PD-1 naive)	IOV-COM-202 Study, C	ohort 2A		
PD-1 Selected TIL	LN-145-S1	Melanoma (post-anti-PD-1)	IOV-COM-202 Study, Co	ohort 1B		
PD-1 Selected TL	LN-145-S1	HNSCC (post-anti-PD-1)	C-145-03 Study, Cohort	4		
	LN-145 Gen 3 + core biopsy	NSCLC (2L post-chemo & post-anti-PD-1)	IOV-LUN-202 Study, Co	ohort 3		
Third Generation (Gen 3) TIL	LN-144 Gen 3	Melanoma (post-anti-PD-1)	IOV-COM-202 Study, Co	ohort 1C		
16-day manufacturing	LN-145 Gen 3	HNSCC (post-anti-PD-1)	C-145-03 Study, Cohort 3			
PBL Therapy	IOV-2001	CLL/SLL (post-BTKi)	IOV-CLL-01 Study			
PD-1 Inactivated TIL	IOV-4001	Multiple				
IL-2 Analog	IOV-3001	Multiple				

Abbreviations: BTD=breakthrough therapy designation; BTKi=Bruton's tyrosine kinase inhibitor; CLUSLL=chronic lymphocytic leukemia and small lymphocytic lymphoma; HNSCC=head and neck squamous cell carcinoma; IL-2=interleukin 2; ipi/nivo=ipiliumumabn/nivolumab; NSCLC=non-small cell lung cancer; PBL=peripheral blood lymphocytes; RMAT=Regenerative Medicines Advanced Therapy; TIL=tumor infiltrating lymphocytes

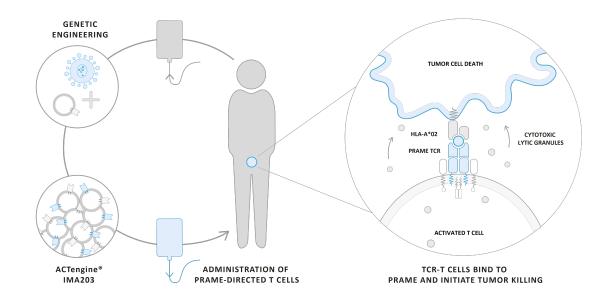
Achilles Therapeutics, plc (NasdaqGS: ACHL)

- Targeting Personalized Clonal Neoantigens, Present on all Tumor Cells
- Tumor eradicating potential designed to overcome limitations of current therapies
- Industry-leading clonal neoantigen discovery using real world patient data (TRACERx) and a proprietary bioinformatics tool (PELEUS®) to enable precision T cell targeting



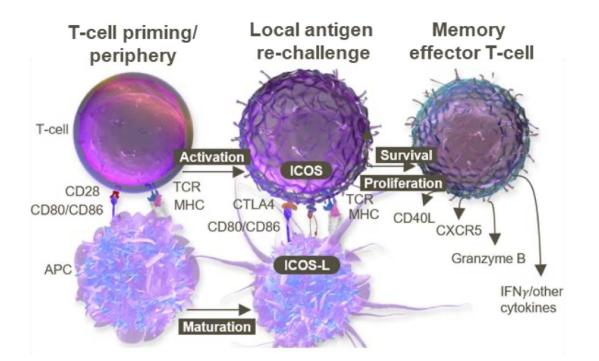
Achilles Therapeutics, plc (NasdaqGS: ACHL) Clinical Pipeline

	IND ENABLING	PHASE I/II	UPCOMING MILESTONES
Non–small cell lung cancer (NSCLC) Monotherapy	CHIRO	N	Higher-dose cNeT data: 2H 2022
Melanoma Monotherapy	THETIS Cohort A		Higher-dose cNeT data: 2H 2022
Melanoma PD-1 Combo	THETIS Cohort B		cNeT / PD-1 combo data: 2H 2022
Head and Neck (H&N)			IND acceptance: 1Q 2022
Renal Cell Carcinoma (RCC)			IND submission: 2H 2023


Engineered T Cell (TCR) Therapy

Immatics N.V. (NasdaqCM: IMTX)

- We are unlocking immunotherapies for solid cancer patients with high unmet medical need by accessing intracellular cancer targets with TCR-based therapeutics.
- Proprietary Target and TCR Discovery Platforms
 - **True Target** via XPRESIDENT® Target Discovery Platform
 - **Right TCR** via XCEPTOR® TCR Discovery Platform
- **TCER**® Next-generation Bispecific platform with the lead molecule entering the clinical development in 2022
- ACTengine® (TCR-T) High Objective Response Rate during ongoing dose escalation in TCR-T Ph1a trial IMA203 to PRAME


Immatics N.V. (NasdaqCM: IMTX) Clinical Pipeline

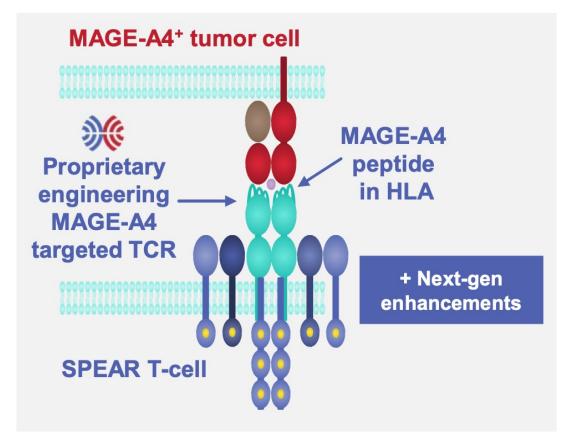
Modality	Product Candidate	Status	Preclinical	Phase 1a ¹	Phase 1b ¹	Phase 2/3
	IMA201 (MAGEA4/8)	Proprietary				
	IMA202 (MAGEA1)	Proprietary				
ACTengine®	IMA203 (PRAME)	Proprietary				
Autologous ACT	IMA203 (PRAME) + Checkpoint Inhibitor	Proprietary				
	IMA203CD8 (PRAME)	Proprietary				
	IMA204 (COL6A3)	Proprietary				
Autologous	3 ACT programs (Undisclosed)	istol Myers Squibb"				
ACT	2 ACT programs (Undisclosed)	gsk				
Allogeneic ACT	ACTallo [®] IMA30x (Undisclosed)	Proprietary				
	IMA401 (MAGEA4/8) ر ^{اا} ا Bri	istol Myers Squibb"				
TCER [®] Bispecifics	IMA402 (PRAME)	Proprietary				
	IMA40x (Undisclosed)	Proprietary				
Bispecifics	3 Bispecific programs (Undisclosed)	Genmab			 	

GlaxoSmith Kline, plc (NYSE: GSK)

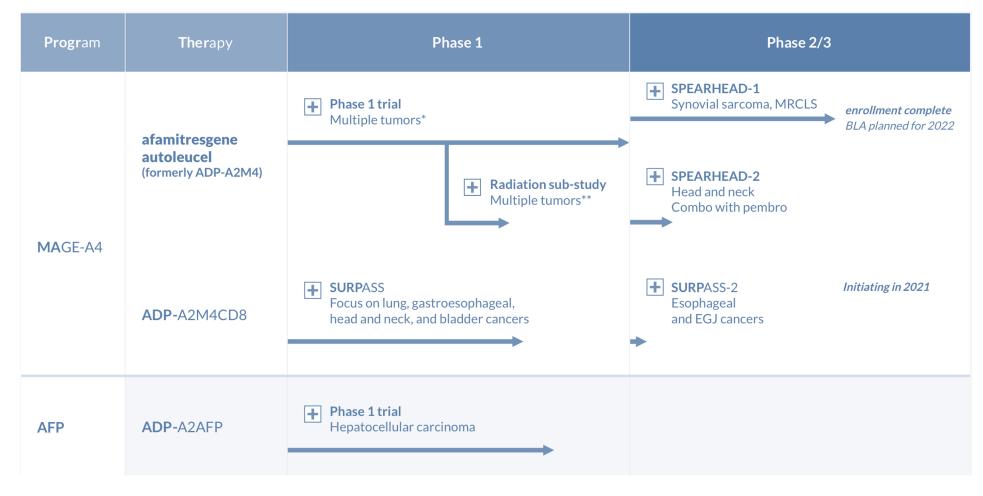
- Innovative approach to the CD226 axis (anti-CD96, anti-PVRIG)
 - CD226 axis plays an important role in cancer immune surveillance
- **BLENREP**: first-in-class BCMA targeted therapeutic for multiple myeloma
- **Feladilimab**, ICOS receptor agonist: several nearterm catalysts anticipated
 - Novel I-O target, expected to modulate T-cell dynamics

APC, antigen-presenting cell; CXCR5, C-X-C motif chemokine receptor 5; ICOS-L, ICOS ligand; IFN- γ , interferon gamma; MHC, major histocompatibility complex

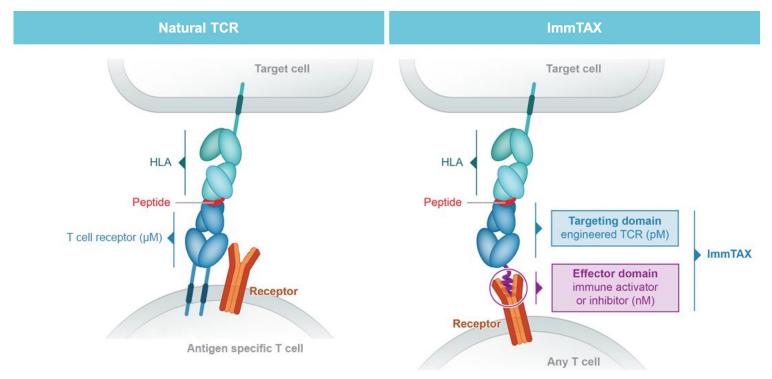
GlaxoSmith Kline, plc (NYSE: GSK) Oncology Pipeline


Molecule	Phase 1 (FTIH) Phase 2 (dose expansion)	Phase 2/3 (pivotal)
Zejula (niraparib)	First line maintenance ovarian, other solid tumours under investigation	
BLENREP (belantamab mafodotin) [†]	Multiple myeloma	
TGF-beta trap/PD-L1 antagonist (bintrafusp alfa) [¥]	NSCLC, BTC, cervical, other solid tumours	
PD-1 antagonist (dostarlimab)	Solid tumours (including endometrial, ovarian, NSCLC, Cervical, other MSI-H tumours)	
ICOS receptor agonist (feladilimab, GSK3359609) ^{†+}	NSCLC, HNSCC, other solid tumours	
NY-ESO-1 TCR T cells (GSK3377794) [†]	Sarcoma, NSCLC, multiple myeloma	
TIM-3 antagonist (cobolimab, TSR-022)	Solid tumours	
PRMT5 inhibitor (GSK3326595) [†]	Solid tumours, heme malignancies	
NY-ESO-1 lmmTAC® (GSK3537142) [‡]	Solid tumours	
CD96 (GSK6097608)	Solid tumours	
LAG-3 antagonist (TSR-033)	Solid tumours	Synthetic lethality
STING agonist (GSK3745417)	Solid tumours	Immuno-oncology
CD8 TCR T cells (GSK3901961) [†]	Solid tumours	Oncology cell therapy
TGFbR2 TCR T cells (GSK3845097) [†]	Solid tumours	Cancer epigenetics
Type 1 PRMT inhibitor (GSK3368715) [†]	Solid tumours, DLBCL	

Source: "gsk JP Morgan Healthcare Conference", https://www.gsk.com/media/6528/gsk jpm_2021_final_12012021.pdf. Accessed Mar. 1.


Adaptimmune Therapeutics (NasdaqGS: ADAP)

- Our MAGE-A4 franchise is the cornerstone of our success
 - MAGE-A4 is a validated target
- Our fully integrated cell production expertise puts us on quick path to allogeneic scale up
- HiT induces strong, dose-dependent and persistent tumor regression in vivo
- Enhancing SPEAR T-cells to improve patient response, survival, and quality of life

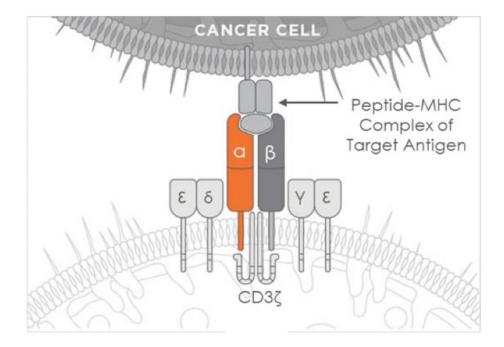

Adaptimmune Therapeutics (NasdaqGS: ADAP) Pipeline

Immunocore Holdings plc (NasdaqGS: IMCR)

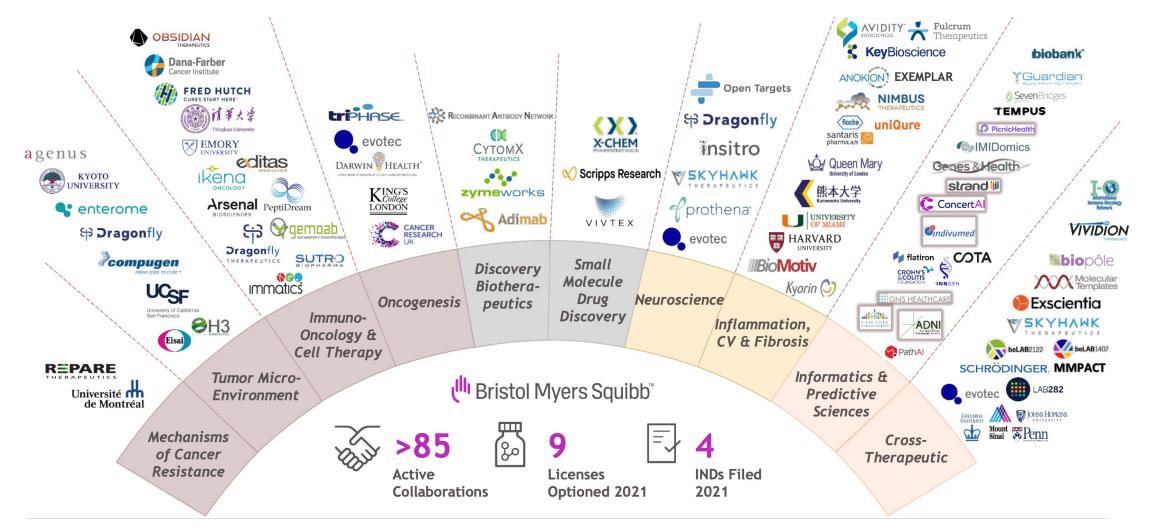
- KIMMTRAK®: First-in-class, off-the-shelf, bispecific TCR
 - Targeting gp100 protein in melanoma
- We pioneered converting membrane-bound T cell receptors
 - Into soluble, off-the-shelf, bispecific therapeutics (ImmTAX)

Immunocore Holdings plc (NasdaqGS: IMCR) Pipeline

Candidate	Target	Indication	Pre-clinical	Phase 1 / 2	Phase 3	Approved	Anticipated Milestones
Oncology							
KIMMTRAK [®] gp100		Uveal melanoma					 ✓ FDA Approval 1Q 2022 ♦ Commercial launch 1H 2022
		Cutaneous melanoma					Randomized study 4Q 2022
IMC-C103C ¹	MAGE-A4	NSCLC, gastric, head & neck, ovarian, synovial sarcoma					 ✓ Initiated ovarian expansion ♦ Ph. 1 update 4Q 2022
IMC-F106C	PRAME	NSCLC, breast, endometrial, ovarian, SCLC, melanoma					Ph. 1 initial data 3Q 2022
Candidate #4	Undisclosed	Multiple solid tumors					
Candidate #5	Undisclosed	Colorectal, gastric, pancreatic					
Infectious Diseas							
IMC-I109V	Envelope	Hepatitis B Virus (HBV)					Enrolling Ph. 1
IMC-M113V ²	Gag	Human Immunodeficiency Virus (HIV)					✤ First patient dosing 2Q 2022


Chimeric Antigen Receptor (CAR) T Cell Therapy

ر ^{ال} Bristol Myers Squibb"	Bristol-Myers Squibb Company	Slide 53
U NOVARTIS	Novartis AG	Slide 56
2 seventy bio.	2seventy bio, Inc	Slide 58
Roche	Roche Holdings AG	Slide 60
Kite	Kite Pharma	Slide 62
GILEAD	Gilead Sciences, Inc. (GILD)	Slide 64
P 秀 明 康 徳 WuXi AppTec	WuXi AppTec	Slide 66

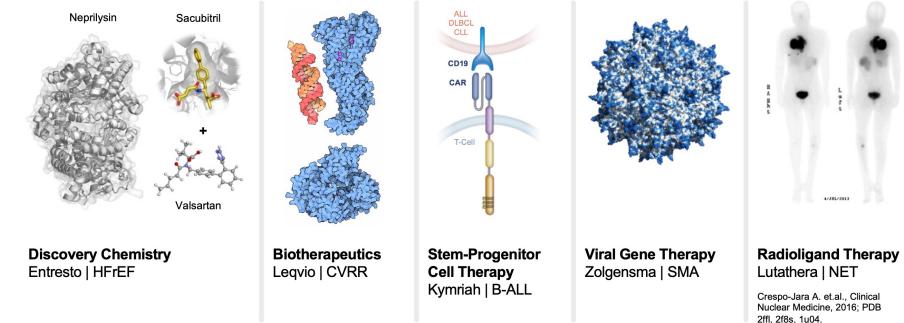

Bristol-Myers Squibb Company (NYSE: BMY)

- Broad investment in next generation cell therapies
 - Dual Antigen Targeting CAR Ts- mitigating antigen loss
 - **CAR T Armed Payload-** overcoming tumor microenvironment resistance
 - **Engineered TCR T Cells for Solid Tumors-** recognizes intracellular targets
 - Allogeneic CAR T Cells- off the shelf alternative

Bristol-Myers Squibb Company (NYSE: BMY) Partnerships

Source: "Bristol Myers Squibb Investor Event", https://s21.g4cdn.com/104148044/files/doc_presentations/2021/2021-BMS-Investor-Event-Presentation.pdf, Accessed Mar. 21.

Bristol-Myers Squibb Company (NYSE: BMY) Pipeline


	Pha	se 1		Pha	se 2	Phase 3	Marketed
AHR Antagonist (Ikena) ²	Anti-NKG2A	Anti-TIM3		Anti-CTLA-4 NF	BET Inhibitor ¹ (CC-90010)	bempegal- desleukin	OPDIVO (nivolumab)
Anti-CCR8	Anti-OX40	AR LDD		Anti-CTLA-4 Probody	farletuzumab - eribulin ADC	linrodostat	(INVOLUTION) INECTION FOR INTERVENUS LISE TO REFINE YERVOY (ipilimumab)
Anti-CTLA-4 NF-Probody	motolimod	CD3xPSCA (GEMoaB) ²	STING Agonist	Anti-Fucosyl GM1	LSD1 Inhibitor ¹	subcutaneous nivolumab	Injection for intravenous infusion
Anti-IL-8	TIGIT Bispecific	IL-12 Fc	TGF8 Inhibitor	Anti-TIGIT		relatlimab ¹	

Source: "Bristol Myers Squibb Investor Event", https://s21.q4cdn.com/104148044/files/doc_presentations/2021/2021-BMS-Investor-Event-Presentation.pdf. Accessed Mar. 21.

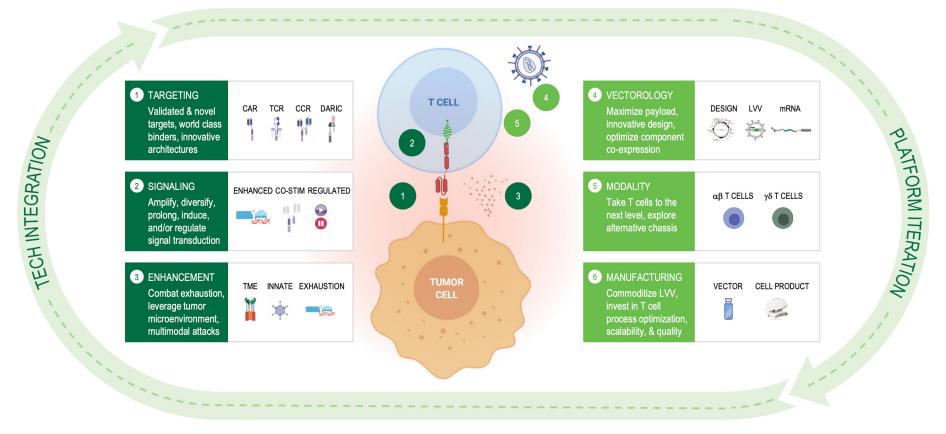
Novartis AG (NYSE: NVS)

- Over 30 NMEs in clinical development
- Kymriah: is an FDA approved CAR-T therapy
- Investing in innovative combinations and advanced therapy platforms
- NIBR deploys a technology-forward approach to unlock therapeutic opportunities across five platforms

Source: "KYMRIAH (tisagenlecleucel)", https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/kymriah-tisagenlecleucel. Accessed Mar. 21.; "Novartis R&D Day December 2, 2021", https://www.novartis.com/sites/novartis_com/files/novartis-r-d-day-2021-presentation.pdf. Accessed Mar. 21.

Novartis AG (NYSE: NVS) 2022 Key Late-Stage Programs

	Compound (indication)	Phase 2	Phase 3	Registration
Differentiated	Sabatolimab (MDS)			
Immuno- therapy	Sabatolimab (Unfit AML)			
Ê	NIS793 (mPDAC)			
23	Canakinumab (Adjuvant NSCLC)			
Radioligand	¹⁷⁷ Lu-PSMA 617 (mCRPC; post-taxane)			
Therapy	¹⁷⁷ Lu-PSMA 617 (mCRPC; pre-taxane)			
960	¹⁷⁷ Lu-PSMA 617 (mHSPC)			
Cell & Gene Therapy	YTB323 (2L DLBCL – transplant eligible)*			
(È)	YTB323 (2L DLBCL – transplant ineligible)*			
Targeted	JDQ443 (2/3L NSCLC)*			
Therapy	Scemblix® (1L CML-CP)			
I I I I I I I I I I I I I I I I I I I	Kisqali® (Adjuvant BC)			


* Planned Phase 3 programs initiating in 2022

Source: "Novartis R&D Day December 2, 2021", https://www.novartis.com/sites/novartis_com/files/novartis-r-d-day-2021-presentation.pdf. Accessed Mar. 21.

2seventy bio, Inc (NasdaqGS: TSVT)

- R&D engine built to rapidly design, test learn, & iterate.
- Multiple approved autologous CAR T products establish a powerful platform on which to build

2seventy bio, Inc (NasdaqGS: TSVT) Pipeline

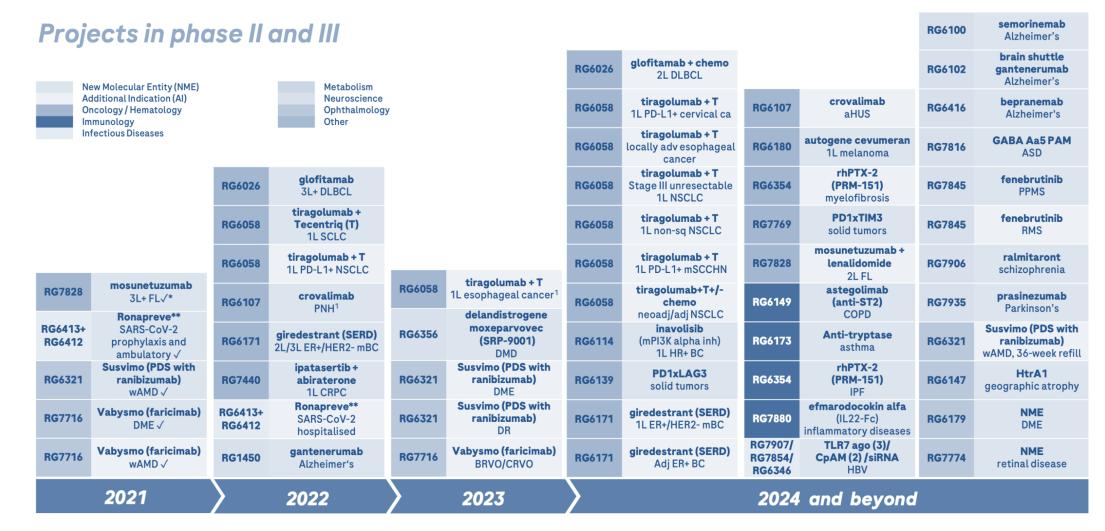
INDICATION [DRUG]	TARGET	TECHNOLOGY	DISCOVERY STAGE R&D	IND-ENABLING PRECLINICAL STUDIES	CLINICAL STUDIES	APPROVED PRODUCTS
Multiple Myeloma [ABECMA]	BCMA	CAR T cell	BMS Partnership			Abecma Inclusive voticel sea.
Multiple Myeloma [ABECMA]	BCMA	CAR T cell	BMS Partnership; Earlier-lir	e Studies	Label Expans	sion
AML-Pediatric [DARIC33]	CD33	Drug-Regulated CAR T cell (DARIC)	SCRI Collaboration		Phase 1 Ope	n
B-NHL [bbT369]	Dual B cell targets	Dual-Targeted CAR T cell Signal Enhanced Gene Edited	TSVT Owned		Phase 1 Ope	n
AML-Adult [DARIC33 Next-Gen]	CD33 + Undisclosed	Drug-Regulated CAR T cell Dual- Targeted Potency Enhanced	SCRI Collaboration			
Ovarian Cancer [bbT4015]	MUC16	CAR T cell Pharmacologic Enhancements	REGN Collaboration		2023 IND Submission	
Solid Tumors	MAGE-A4	TCR T cell Potency Enhanced	REGN / MEDG Collaboration	n	2023 IND Submission	
Solid Tumors	Multiple	CAR / TCR T cell Potency Enhanced	Multiple			
Multiple Myeloma	Multiple	Multi-Targeted CAR T cell Potency Enhanced	TSVT Owned			
Additional Indications	Undisclosed	Multiple	Multiple; Including Collab. w	ith Novo Nordisk		

Source: "Join the Patient Mission 2022 Full Year Outlook", https://ir.2seventybio.com/static-files/c7058720-1ee9-4976-a8ac-f942e58e3ba9. Accessed Mar. 2.

DRAGON GATE INVESTMENT PARTNERS

Roche Holdings AG (OTCQX: RHHBY)

• NAVIFY® Oncology Hub Empowering more efficient and effective clinical decisions


.....

• Large pipeline of oncology treatments

		Phase III (11 N	MEs + 40 A	ls)		R	egistration US & E	U (3 NMEs + 8 Als)
RG3502	Kadcyla + T	2L+ HER-2+ PD-L1+ mBC	RG7601	Venclexta	r/r MM t(11:14) RG6013	Hemlibra ³	mild to moderate hemophilia A
NG3502	Kadcyla + T	HER-2+ eBC high-risk	NG7001	Venclexta + azacitidine	e 1L MDS	RG6396	Gavreto ²	RET+ MTC, TC
RG6026	glofitamab + chemo	2L+ DLBCL	RG7828	mosunetuzumab + lena	alidomide 2L+ FL	RG7446	Tecentriq ²	NSCLC adj
	tiragolumab + T + chemo	1L SCLC	RG7853	Alecensa	ALK+ NSCLC ad	j RG7596	Polivy ³	1L DLBCL
	tiragolumab + T	1L PD-L1+ NSCLC	RG3648	Xolair	food allerg	RG7828	mosunetuzumab	3 L+ FL
RG6058	tiragolumab + T locally adva	nced esophageal cancer	RG6354	rhPTX-2 (PRM-151	idiopathic pulmonary fibrosis	RG6321	Susvimo (PDS with rani	bizumab) wAMD
	tiragolumab + T	1L esophageal cancer		Gazyva	lupus nephriti	s RG7716	Vabysmo (faricimab) ¹	DME
	tiragolumab + T stage III	unresectable 1L NSCLC	RG7159	Gazyva	membranous nephropath	/	Vabysmo (faricimab) ¹	wAMD
RG6107	crovalimab	PNH		Gazyva	systemic lupus erythematosu	s RG6152	Xofluza ³	influenza, pediatric (1-12
100107	crovalimab	aHUS	RG6152	Xofluza	influenza, pediatric (0-1 year)			years)
RG6114	inavolisib (mPI3K alpha inh)	1L HR+ mBC	100132	Xofluza	influenza direct transmission		Actemra ⁴	COVID-19 pneumonia
RG6171	giredestrant (SERD)	ER+/HER2- mBC	RG1450	gantenerumab	Alzheimer		Evrysdi	SMA pediatric >2months
NG0171	giredestrant (SERD)	adj ER+ BC	RG1594	Ocrevus higher dose	RMS & PPMS		, filed in EU	
RG6268	Rozlytrek ROS1+	1L NSCLC	RG6042	tominersen	Huntington	² Approved in US		
RG7440	ipatasertib + abiraterone	1L CRPC	RG6168	Enspryng	myasthenia gravi	s ³ Filed in the EU		
	Tecentriq + platinum chemo	NSCLC neoadj	RG6356	delandistrogene moxe	parvovec (SRP-9001) DME)		
	Tecentriq	NMIBC, high risk	RG7845	fenebrutinib	PPMS	⁴ Approved in EU		
	Tecentriq	RCC adj	RG7845	fenebrutinib	RMS			
	Tecentriq + cabozantinib	advanced RCC		Susvimo (PDS with rani	ibizumab) DME		ecular Entity (NME)	Metabolism
	Tecentriq + cabozantinib	2L NSCLC	RG6321	Susvimo (PDS with rani	ibizumab) DF		al Indication (AI) y / Hematology	Neuroscience Ophthalmology
	T±chemo	SCCHN adj		Susvimo (PDS with rani	ibizumab) wAMD, 36-week	Immunol		Other
RG7446	T + capecitabine or carbo/gem	1L TNBC	RG7716	Vabysmo (faricimab)	BRVC) Infection	us Diseases	
	T + paclitaxel	TNBC adj	NG7710	Vabysmo (faricimab)	CRVC)		
	T + Avastin	HCC adj						
	T±chemo	1L mUC	T=Tecentriq					
	Tecentriq	SC NSCLC						
	Tecentriq	ctDNA+ high-risk MIBC						
	T+ lurbinectedin (TBC)	1L maintenance SCLC						

Roche Holdings AG (OTCQX: RHHBY) NME submissions and their additional indications

Source: "Roche 2021 Results", https://assets.cwp.roche.com/f/126832/x/baa445a513/irp220203-a.pdf. Accessed Mar. 15.

Kite A Gilead Company

- First cell therapy approved in U.S. for 3L for Relapsed or Refractory (R/R) Large B-cell Lymphoma (LBCL) October 2017
- Accelerated approval in U.S. for 3L for R/R Follicular Lymphoma (FL) March 2021
- Accelerated approval in U.S. for R/R Mantle Cell Lymphoma (MCL) July 2020
- Conditional Marketing Authorization in EU for R/R MCL December 2020
- Approved in U.S. for Adult R/R B-cell Precursor Acute Lymphoblastic Leukemia (ALL) October 2021

Kite Pipeline

				PHASE 1	PHASE 2	PHASE 3	FILED	Updates since Q3'21
	Yescarta® (axi-cel)	R/R FL	•			sBLA Appr	oved; Type II Filed	
	Tecartus® (brexu-cel)	R/R Adult ALL	•			sBLA Appr	oved; Type II Filed	
ру	Yescarta® (axi-cel)	2L LBCL				sBLA	Filed; Type II Filed	EMA Type II variation filed
Therapy	Yescarta® (axi-cel)	1L LBCL						
Cell	Brexu-cel	Pediatric ALL			Pivotal			
	KITE-222 (CLL-1)	R/R AML	*					New
	KITE-363 (CD19/20 bicistronic)	3L+LBCL	*					New
						★ New listing	since Q3'21 🔺	Change since Q3'21

Breakthrough Therapy Designation

Gilead Sciences, Inc. (NasdaqGS: GILD)

Our transformative science is focused on three core areas :

- Therapies that **trigger tumor-intrinsic cell death** (e.g. Trodelvy).
- Therapies that **promote immune-mediated tumor killing** (e.g. Yescarta, magrolimab, Tecartus).
- Therapies that **remodel the tumor-permissive microenvironment** (e.g. etrumadenant).

CAR T-cell Therapies and 2L Treatment

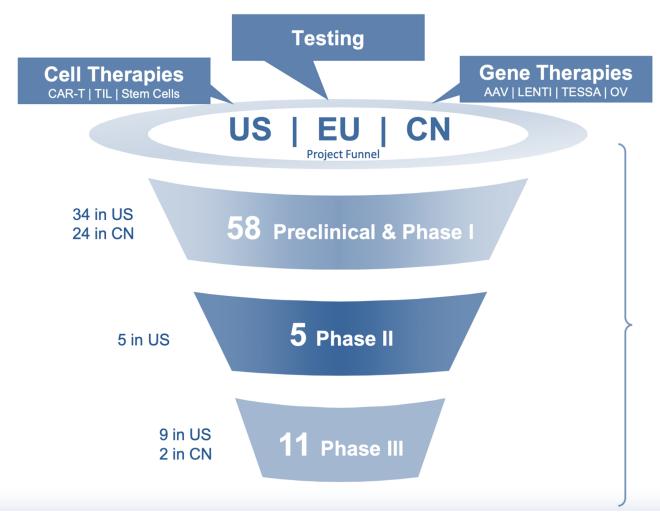
Gilead Sciences, Inc. (NasdaqGS: GILD) Oncology Pipeline

	PHASE 1	HASE 1 PHASE 2			PHASE 3, FILED, OR APPROVED				
		Magrolimab anti-CD47⁵ DLBCL	Sacituzumab govitecan-hziy Basket study (incl. NSCLC)	Sacituzumab govitecan-hziy 1L mTNBC (PD-L1+)	Sacituzumab govitecan-hziy HR+/HER2-mBC	Trodelvy® 2L mUC			
		Magrolimab anti-CD47 Solid Tumors	Magrolimab anti-CD47 ⁵ HNSCC	Sacituzumab govitecan-hziy 1L mTNBC (PD-L1-)	Sacituzumab govitecan-hziy 2-3L NSCLC	Trodelvy® 2L mTNBC			
Oncology		Etruma combinations (ARC-9) mCRC	Magrolimab anti-CD47 MM	Sacituzumab govitecan-hziy 1L NSCLC	Magrolimab anti-CD47⁵ 1L HR MDS	Tecartus® (brexu-cel) Adult ALL			
Once		Etruma combinations (ARC-6) ² mCRPC	Magrolimab anti-CD47 TNBC	Magrolimab anti-CD47 ⁶ 1L Unfit AML	Magrolimab anti-CD47⁵ 1L AML	Yescarta® (axi-cel) R/R FL			
		Dom + zim ± etruma (ARC-7) NSCLC	Brexu-cel Pediatric ALL	Dom ± durva (PACIFIC-8) Stage 3 NSCLC	Dom + zim vs. zim vs. chemo (ARC-10) 1L NSCLC	Yescarta® (axi-cel) 2L LBCL			
		Yescarta® (axi-cel) 1L LBCL							

WuXi AppTec Co., Ltd. (Pink Limited Infromation:WUXAY)

- Five Platforms
 - WuXi Chemistry, WuXi Biology, WuXi Testing, WuXi ATU, WuXi DDSU
- Provide cell and gene therapy CTDMO partnership
 - Integrated development, manufacturing, and testing services can be tailored to meet client needs
- New Facility in PA
 - Triples current testing capacity for cell and gene therapy
 - Full testing capabilities covering assay development, biologics safety testing, viral clearance, commercial lot release assays

• New Facility in Shanghai


• Offers integrated development, manufacturing, and testing services for viral vectors and cell therapies to global clients

Car-T Platform Process

WuXi AppTec (Pink Limited Infromation:WUXAY) Cell and Gene Therapy Pipeline

Provided Globally Integrated CRTDMO Services to Cell & Gene Therapy product development

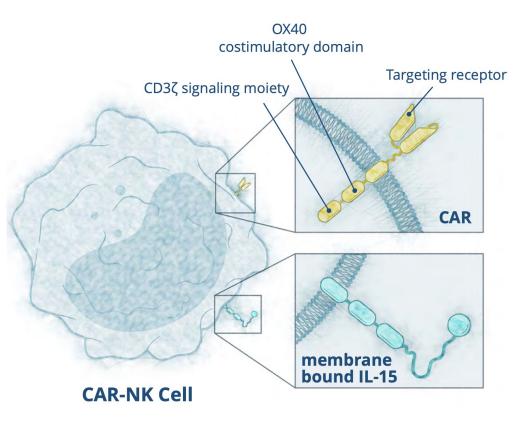
4 projects are in BLA preparation stage

nkarta

THERAPEUTICS

Natural Killer (NK) Cell Therapy

Nkarta, Inc


Slide 71

68

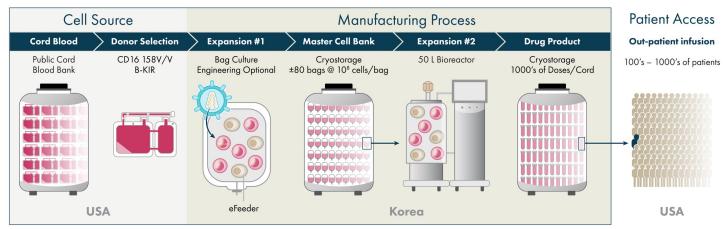
Nkarta, Inc (NasdaqGS: NKTX)

- NK cell platform built for
 - Blood cancers and solid tumors, allogeneic and off-the-shelf, industrialized manufacturing, and outpatient administration
- Genome engineering capability
 - Clinically validated CRISPR gene editing,
 - Ability to deploy up to 5 CRISPR/Cas9 gene edits in unlimited number of Nkarta product candidates
- Experienced clinical development partner
- A Platform That Incorporates Multiple Next Generation Enhancements
 - No requirement for cytokine support, Enhanced expansion, persistence and TME resistance via CISH deletion, armored cells with membrane-bound IL-15 for persistence

Nkarta, Inc (NasdaqGS: NKTX) Pipeline

	Indication	Discovery	Preclinical	IND	Clinical	Partner
NKX101	AML and MDS (systemic i.v.)					
(NKG2D)	HCC/mCRC/ICC (locoregional i.a.)					
NKX019 (CD19)	B-cell malignancies					
CD70	CD70+ tumors					
NK + T	Not disclosed					CRISPR THERAPEUTICS

Source: Nkarta, Inc


Artiva Biotherapeutics, Inc (Pre-IPO)

Manufacturing-First approach

• enabled us to produce, store and ship our product candidates and make them accessible like traditional protein biologic therapies.

Twofold product strategy

- **ADCC Enhancers** NK cells that can enhance a patient's antibody-dependent cellular cytotoxicity (ADCC) response when undergoing monoclonal antibody therapy, increasing the therapy's anti-tumor activity.
- **Targeted CAR-NK** NK cells engineered to express proprietary chimeric antigen receptors (CARs) that have the potential to enhance the targeting and activity of the NK cells.
- Proprietary Off-the-Shelf AlloNKTM Cell Therapy Platform
- Strategic Partnerships with MERK, Affimed, GC Cell

Artiva's Advantage: A Platform for the Next Generation of Cell Therapy

Source: "AMENDMENT NO. 3 to SEC FORM S-1", https://www.sec.gov/Archives/edgar/data/0001817241/000119312522068001/d76940ds1a.htm. Accessed Mar. 15.

Artiva Biotherapeutics, Inc (Pre-IPO) Pipeline

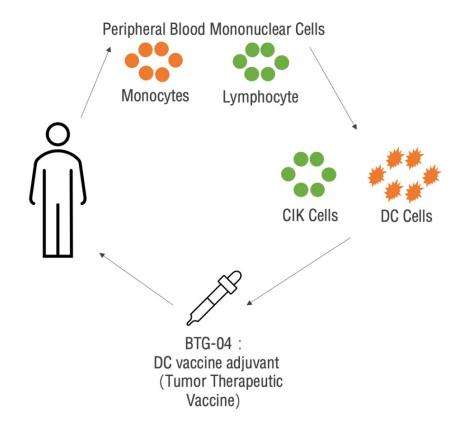
	Program	Research	IND Enabling	Phase 1	Phase 2	Phase 3
¥k.	ADCC Enhancer NK					
NK	AB-101	+ Rituximab in B-Cell Malignancies				
	Targeted CAR-NK					
	AB-201 (HER2)	HER2+ Solid Tumors				
	AB-202 (CD19)	B-Cell Malignancies				

Gamma Delta T Cell Therapy

BERONI GROUP	Beroni Group Limited			
GAMMA DELTA	GammaDelta Therapeutics	Slide 77		
THERAPEUTICS	LAVA Therapeutics N.V.	Slide 79		
TG BIOPHARM	TC BioPharm plc	Slide 81		
INgbio	IN8bio, Inc	Slide 83		

Beroni Group Limited (OTCQX: BNIGF)

• Next-Gen oncology drug: PENAO has shown preclinical activity in a variety of cancers including ovarian, breast, and pancreatic cancer


• Proprietary Allogenic Gamma Delta T-Cell Formula

- can improve the survival and tumor killing capability of Gamma Delta T-cells
- Shown to kill cancer cells in preclinical trial
- Preliminary clinical trial shown treatment for solid tumors is safe, no rejection, and cell factor- free storm

• DC Vaccine Adjuvant

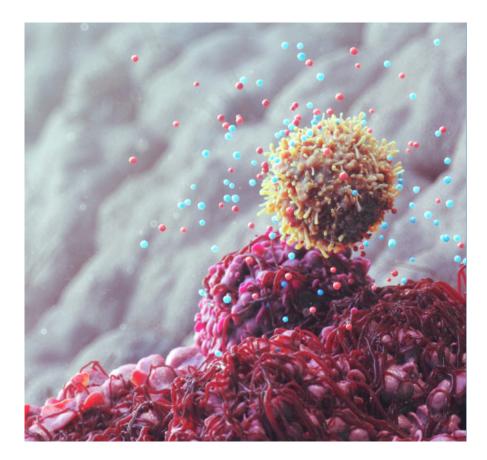
• Our technology can prepare antigen-presenting cells (APCs) with the ability to activate T cells, and use the properties of APCs to prepare pharmaceutical compositions for effective treatment of cancer and infectious diseases

• Joint Gene Detection Lab with ThorGene

Beroni Group Limited (OTCQX: BNIGF) γδ T Clinical Trial

- Clinical trials have shown gamma delta T cell therapy was safe for clinical treatment of tumors.
 - No clinical side effects were observed
 - Patients felt an improvement in quality of life
- According to clinical observations and tests, for most tumor patients, effects of therapy were significant
- $\gamma\delta$ T cell therapy has a significant impact on the immune function of some patients and can significantly upregulate the expression levels of cytokines such as tumor necrosis factor and interferon in patients.
- With positive trial results, the curative effect on postoperative tumor and the effect on the patient's immune function need to be followed up.

Beroni Group Limited (OTCQX: BNIGF) R&D Pipeline

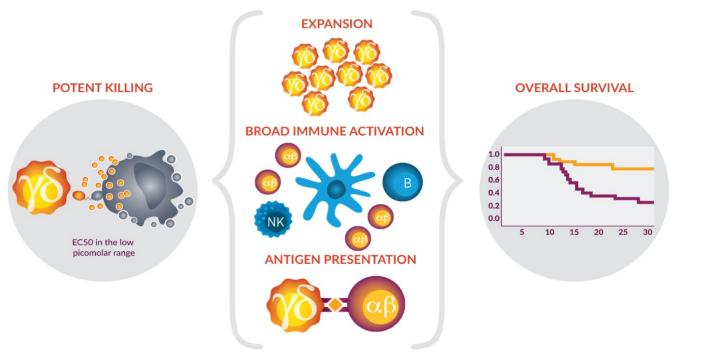

Pre-Clinical	Clinical Phase I	Clinical Phase II	Product
PENAO			
Small molecule drug			
Allogeneic γδ T cell			
Cell preparation			
Protein modifier R8			
Cell preparation			
DC vaccine adjuvant			
Tumor therapeutic vaccine			
Coronaviruses: Single-domain	antibody		
Antibody treatment			
CII- ArboViroPlex (FDA - EUA ap	oproved. CE certified)		
Virus detection kit			
SARS-CoV-2 IgG/IgM (CE certif	ied)		
Antibody detection kit (CE)			
SARS-CoV-2 IgG/IgM (FDA - EU	A under review)		
Antibody detection kit (FDA)			
SARS-CoV-2 Antigen (CE certifi	eu)		

Antigen detection kit

GammaDelta Therapeutics

- Ability to expand distinct populations of Vδ1⁺ T cells from both tissue and blood allows us to compare their properties and explore their complementary potential for treatment of various diseases.
- We are exploring introduction of Chimeric Antigen Receptors (CAR) and other gene constructs into our Vδ1⁺ T cells to target cancers and other serious diseases.
- Takeda announced the exercise of option to acquire GammaDelta Therapeutics
 - Deal expected to be finalized in Q1 of Takeda's 2022 fiscal year
- Strategic Partners
 - Kings College London, The Francis Crick Institute, Cancer Research Technology, Takeda

GammaDelta Therapeutics Pipeline


	Indication(s)	Pre-Clinical	Clinical Development
GDX012 Allogenic blood-derived Vδ1+ γδ T cells	Haematological malignancies		
GDX014 Allogenic blood-derived Vδ1+ cells (gene-engineered)	Haematological malignancies		
GDX023 Allogenic skin-derived Vδ1+ cells (gene-engineered)	Solid tumors		
GDX015 Allogenic blood-derived Vδ1+ cells (gene-engineered)	Solid tumours		

LAVA Therapeutics N.V. (NasdaqGS: LVTX)

• Proprietary Platform GammabodyTM

- platform triggers the potent and precise antitumor properties of Vg9Vd2 T cells
- First off-the-shelf bispecific gd T cell engager platform
- Potential to address broad patient populations with high unmet medical needs regardless of tumor mutational load
- Leverages unique characteristics of Vg9Vd2 T cells to provide a wider therapeutic window

LAVA Therapeutics N.V. (NasdaqGS: LVTX) Pipeline

Candidate	Antigen Target	Indication(s)	Discovery	Preclinical	Phase 1	Phase 2	Phase 3
LAVA-051	CD1d	MM CLL AML					
LAVA-1207	PSMA	mCRPC					
LAVA-1223	EGFR	Solid Tumors				Hematologic ı	malignancy
LAVA-1278	CD40	Hematologic Malignancies				Solid Tumor	
Janssen Biotech Collaboration	undiso	closed	Janssei	T			
MM: multiple myeloma CLL: chronic lymphocytic leukemia AML: acute myeloid leukemia			PSMA: EGFR: mCRPC:	prostate-specific r epidermal growth metastatic castrat	factor receptor		

Source: "Pipeline", https://www.lavatherapeutics.com/pipeline-programs/pipeline/. Accessed Mar. 17.

TC BioPharm (Holdings) plc (NasdaqCM: TCBP)

- Step-wise approach to clinical development and commercialization
 - Clinical transition from autologous GD-Ts to allogeneic GD-Ts to CAR-modified allogeneic GD-Ts
- We have built a world-class fully integrated GMP grade specialist GD-T manufacturing center in Glasgow, Scotland
 - Facility undertakes all key functions associated with our GD-T cell development, testing, quality assurance, product manufacture, clinical trial recruitment, management design, support and interaction with regulators

Allogeneic Cell Banks

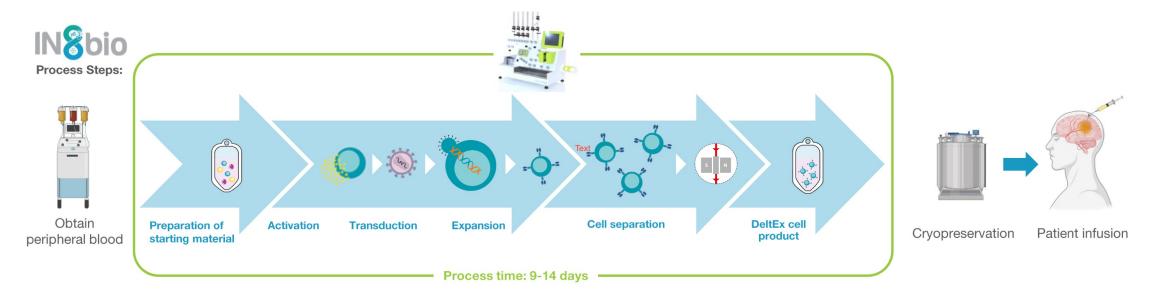
• Donor GD-Ts selection based on highest therapeutic quality

TC BioPharm (Holdings) plc (NasdaqCM: TCBP) Pipeline

Includes focused CAR-GDT cell therapy pipeline

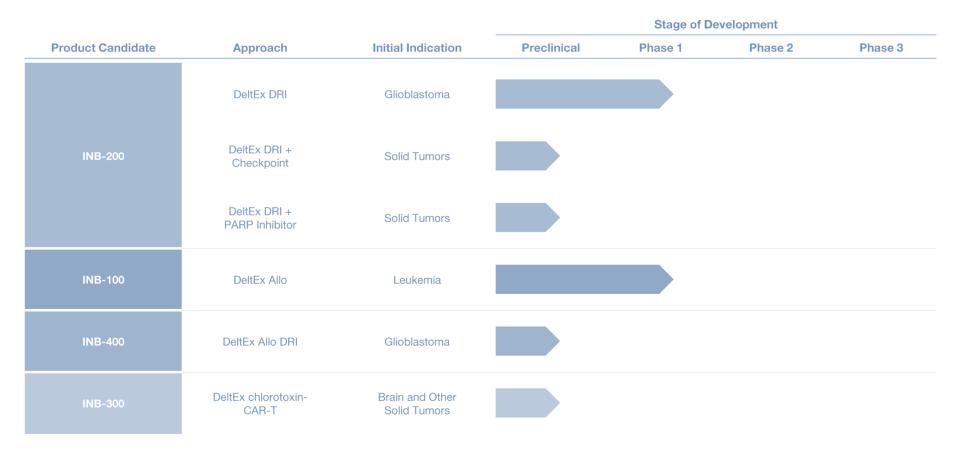
Program	Indication	Pre-clinical	Phase 1	Phase 2	Phase 3	Status / Upcoming Milestone
TCB001 Autologous (unmodified)	Melanoma			2a		Phase 1b/2a POC complete – evidence of tumor shrinkage (not pursuing further development)
Omnimmune (Vδ2 subtype) Allogeneic unmodified)	AML/Haem			2a		Phase 1b/2a complete H1 2020 – PR/CR achieved Phase 2b into pivotal commences H1 2022 Launch planned 2023
ImmuniStim (Vδ2 subtype)	Viral/Covid		1b			Phase 1b/2a commenced H1 2022
TCB009 (Vδ1 subtype)	GI Tract					Phase 1b/2a planned 2023 (Gl-tract cancers)
TCB005/6 (Vδ2 CAR-T)	Solid tumors					Phase 1b/2a planned 2023 (B7H3/5T4)

Source: "AMENDMENT NO. 6 to SEC FORM F-1", https://www.sec.gov/Archives/edgar/data/0001872812/000149315222003620/formf-1a.htm. Accessed Mar. 17.


IN8bio, Inc (NasdaqGM: INAB)

• Automated, robust and scalable cell manufacturing within the CliniMACS Prodigy®

• Consolidates entire manufacturing process in a single closed system to reduce risks of contamination


Proprietary gamma-delta T cell engineering

• DeltEx Drug Resistant Immunotherapy, or DRI protects cells to survive chemotherapy and maintains natural ability to recognize, engage and kill cancer cells

IN8bio, Inc (NasdaqGS: INAB) Pipeline

Thanks!

Address : 800 3rd Ave 11th floor, New York, NY 10022 Tel : +1(646) 801-2803 Email : info@dgipl.com Website : www.dgipl.com